Conditional Probabilities and Bayes' Theorem

Conditional Probabilities

Let A and B be two events. If N is the total number of possible outcomes and N_{A} and N_{B} are the number of outcomes favourable to A and B, respectively, then the probabilities of A and B , denoted $\mathrm{P}[\mathrm{A}]$ and $\mathrm{P}[\mathrm{B}]$, respectively are: $P[A]=N_{A} / N$ and $P[B]=N_{B} / N$. These are the unconditional probabilities of A and B occurring.

Then the probability of A occurring, given that B has occurred, is the conditional probability of A , denoted $P[A \mid B]$ and the probability of B occurring, given that A has occurred is the conditional probability of B , denoted $P[B \mid A]$. Example: A dice is thrown: let A be the event that the outcome is a " 2 " and let B be the event that the outcome is an even number. Then $\mathrm{P}[\mathrm{A}]=1 / 6$ and $\mathrm{P}[\mathrm{B}]=1 / 2$ and $\mathrm{P}[\mathrm{A} \mid \mathrm{B}]=1 / 3$.

If $N_{A B}$ are the number of occurrences favourable to both A and B :

$$
\begin{align*}
& P[A \mid B]=\frac{N_{A B}}{N_{B}}=\frac{N_{A B}}{N} \frac{N}{N_{B}}=\frac{P[A B]}{P[B]} \\
& \text { By identical argument: } P[B \mid A]=\frac{N_{A B}}{N_{A}}=\frac{P[A B]}{P[A]} \tag{1}\\
& \Rightarrow P[A \mid B]=\frac{P[B \mid A] P[A]}{P[B]}
\end{align*}
$$

Given any two events A and B, we can write one of the events, say B as:

$$
\begin{align*}
& B=(B \cap A) \cup(B \cap \bar{A}) \Rightarrow P[B]=P[A B]+P[\bar{A} B] \\
& \Rightarrow P[B]=P[B \mid A] P[A]+P[B \mid \bar{A}] P[\bar{A}]
\end{align*}
$$

where: \bar{A} is the event "not-A".

Bayes' Theorem

Reverend Thomas Bayes - an $18^{\text {th }}$ century Presbyterian minister - proved what is, arguably, the most important theorem in statistics (see "In Praise of Bayes", The Economist, 28 September 2000).

Let T denote "theory" and D denote "data". Then the probability of the theorem being true, given that the data has been observed, is:

$$
\begin{equation*}
P(T \mid D)=\frac{P(T D)}{P(D)}=\frac{P(D \mid T) P(T)}{P(D)} \tag{3}
\end{equation*}
$$

where: $P(D)=P(D \mid T) P(T)+P(D \mid \bar{T}) P(\bar{T}), \bar{T}$ being the event that the theory is false.

Interpretation: $P(T)$ is the prior probability of the theory being true. Given the evidence of the data, this prior probability is updated to arrive at the posterior probability, $P(T \mid D)$. The quantity, $P(D \mid T) / P(D)$ is the updating factor.

Example: Suppose there is a test for cancer. Let B be the event that the person tested has cancer and let A be the event that the test is positive, i.e. says the person has cancer. Suppose $P[A \mid B]=0.95$ and $P[\bar{A} \mid \bar{B}]=0.95$. We are interested in $P[B \mid A]$, the probability that a person has cancer, given that the test is positive:

$$
\begin{aligned}
& P[B \mid A]=\frac{P[A \mid B] P[B]}{P[A]}=\frac{0.95 \times P[B]}{P[A \mid B] P[B]+P[A \mid \bar{B}] P[\bar{B}]} \\
& =\frac{0.95 \times P[B]}{0.95 \times P[B]+(0.05)(1-P[B])}
\end{aligned}
$$

If $P[B]=0.005, P[B \mid A]=0.087$!
Suppose we desire that $P[B \mid A]=0.95$. What should $P[A \mid B]=P[\bar{A} \mid \bar{B}]$ be to achieve this? Solve for X in:

$$
0.95=\frac{X \times 0.005}{X \times 0.005+(1-X) \times 0.995} \Rightarrow X=0.99974
$$

Application to Asymmetric Information

The seller prices his cars, some at $\$ 2500$ and some at $\$ 1000$. He will always sell a good car for $\$ 2500$. He prices some of the bad cars at $\$ 2500$ and some at $\$ 1000$: the probability of a bad car being priced at $\$ 2500$ is μ and of it being priced at $\$ 1000$ is $1-\mu$; half of his cars are bad cars.

The buyer will accept a car priced at $\$ 2500$ with probability q and reject such a car with probability 1-q; the buyer will always buy a car priced at $\$ 1000$. The buyer believes that any car priced at $\$ 2500$ is a bad car with probability β and a good car with probability $1-\beta$.

What is the probability that a bad car is sold for $\$ 2500$?

For the buyer:

$$
\begin{equation*}
\beta=P(B \mid p=2500)=\frac{P(p=2500 \mid B) P(B)}{P(p=2500)}=\frac{0.5 \mu}{0.5 \mu+0.5} \tag{4}
\end{equation*}
$$

Note: $P(p=2500)=P(p=2500 \mid G) P(G)+P(p=2500 \mid B) p(B)=0.5+0.5 \mu$
If the buyer rejects the car priced at $\$ 2500$, his payoff is zero; if he accepts the $\$ 2500$ car then his payoff is:
$(3200-2500-1700) \beta+(3200-2500-200)(1-\beta)=-1000 \beta+500(1-\beta)$. In equilibrium, his expected payoff from rejection or acceptance of a $\$ 2500$ car must be the same implying: $500(1-\beta)-1000 \beta=0 \Rightarrow \beta=\frac{1}{3}$.

Using this value of β to solve for $\mu: \frac{1}{3}=\frac{0.5 \mu}{0.5+0.5 \mu} \Rightarrow \mu=\frac{1}{2}$
For the seller: If he offers a car for $\$ 1000$, his payoff is $\$ 1000$. If he offers a car for $\$ 2500$, his payoff is: $2500 q+0(1-q)$. In equilibrium, the two payoffs are the same: $1000=2500 q \Rightarrow q=\frac{2}{5}$

What is the probability that a bad car is sold for $\$ 2500$?

$$
\begin{align*}
& P(\text { sold at } \$ 2500 \mid B)=P(\text { offered at } \$ 2500 \cap \text { accepted at } \$ 2500 \mid \mathrm{B}) \\
& =\frac{P(\text { offered at } \$ 2500 \cap \text { accepted at } \$ 2500 \cap \mathrm{~B})}{P(B)} \\
& =\frac{P(\text { offered at } \$ 2500 \cap B) P(\text { accepted at } \$ 2500)}{P(B)} \tag{5}\\
& =\frac{(1 / 2) \mu q}{(1 / 2)}=\frac{1}{2} \times \frac{2}{5}=0.2
\end{align*}
$$

So seller can shift 20% of his stock of bad cars at the higher price of $\$ 2500$.

